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We introduce a first passage based Monte Carlo [1] code to investigate the population evolution of Xe fis-
sion gas bubbles in UO, fuels. Growth laws are obtained for homogeneous and heterogeneous re-solution
models for a wide range of gas and bubble diffusivities. Under certain irradiation conditions, bubble pop-

ulations find dynamic steady states. Homogeneous re-solution is included using a Monte Carlo binary col-
lision model, while heterogeneous re-solution is modeled as the ad hoc destruction of bubbles.
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1. Introduction

Understanding and possibly controlling the evolution of the
population of intragranular fission gas (fg) bubbles is a key chal-
lenge in the development of high burn-up generation IV reactor
technologies. The size and spatial distributions of fission gas bub-
bles in uranium dioxide and mixed oxide fuel elements are key
parameters in determining the gas transport properties and the
fuel performance. Fission gas retention can adversely influence
the thermal and mechanical properties of reactor fuels, depending
on the size of the bubbles, while release of gaseous species from
the fuel can lead to cladding failure at high burn-up.

In previous publications we looked at the re-solution of fission
gas from bubbles, through homogeneous [2] and heterogeneous [3]
mechanisms. We employed molecular dynamics and Monte Carlo
(binary collision) simulations, since they are feasible for the short
timescales of re-solution processes, of the order of picoseconds.
The aim of the present work is to extend the modeling capabilities
to nucleation and growth of fission gas bubbles, processes with
timescales of the order of hours, days or even years.

We developed a code based on first passage Green’s functions to
track the diffusive motion of individual atoms and bubbles over
long timescales. The idea was presented by Opplestrup et al. [1]
to treat diffusing objects undergoing two-body reactions. The core
idea is that the migrations of objects undergoing successive identi-
cal diffusive jumps, with only rare encounters with other walkers,
can be treated by allowing many jumps to be computed as a single
super-jump. The method guarantees that no walkers interact dur-
ing each super-jump. We present an overview of the algorithm, but
focusing on our implementation of it for calculations of bubble
evolution.
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Numerous efforts at predicting the release rates and evolution
of the size distribution of fission gas bubbles as functions of tem-
perature and burn-up rate are documented in the literature; how-
ever, they are all conceptually different from our approach.
Existing bubble population models can be partitioned into two
groups, single-size and size-distribution models. The former as-
sume that all bubbles have the same or at least very narrowly dis-
tributed sizes. Turnbull [4] proposed the first single-size bubble
population model for UO, motivated by Cornell’s [5] electron
microscope observation of fission gas bubbles. Both bubbles and
gas atoms in solution are characterized by a mean field concentra-
tion. Both nucleation and re-solution are assumed to be heteroge-
neous in the wake of high energetic fission fragments. Speight [6]
expanded Turnbull’s model to include a size distribution of gas
bubbles. Notably absent from Speight’s model is bubble coales-
cence. Bubble growth is entirely driven by re-solution and absorp-
tion of fission gas atoms. Losénen’s locally accurate model (LOAM)
[7-9] offers another single bubble size model, geared at gas-release
calculations. It refines the spherical grain approximation through
spatial partitioning of the grains, thus allowing for varying bubble
sizes as a function of position inside the grain. However, it similarly
neglects bubble diffusion and coalescence.

The second group of models allows for a broad distribution of
bubble sizes. Wood [10] uses a rate-theory approach to model
the evolution of the size distribution of the fission gas bubbles.
The mathematical basis for his approach is a system of differential
conservation equations — one for each possible bubble size. A solu-
tion requires setting an upper bound for the bubble size to keep the
number of equations in the system finite. Wood chooses homoge-
neous nucleation and a heterogeneous re-solution mechanism,
which ignores any possible dependence of the re-solution cross
section on bubble size. The model does not take coalescence into
account and the parameterization features an unusually high gas
atom diffusion coefficient, several orders of magnitude above
experimental findings. The size space approach by Rusell [11] fea-
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tures both heterogeneous re-solution and nucleation. The size j, of
nucleated bubbles is a sensitive input parameter in the model,
strongly influencing the final size distribution. The size distribution
is assumed to be only slowly changing in time. Coalescence, local
fluctuations, and bubbles below the nucleation size jo are not con-
sidered in this model, leading to bubble sizes that are
underestimated.

The above models all have in common some kind of mean field
approximation, either over entire grains, or in case of Los6nen’s
model, over subregions of a grain. Assumptions about mechanisms
for diffusion, nucleation, growth, and re-solution are hard-wired
into the mathematical formulations. Our model offers far more
flexibility to test the interplay of different mechanisms, as it is
geared towards parametric studies that help extract specific infor-
mation from complex experiments and guide the design of new
experiments. We do not employ mean field approximations, which
allows us to analyze spatial correlations and local concentration
fluctuations, which, as we will show, could have a significant influ-
ence on the bubble population.

For practical time and length scales relevant to typical fuel
operating life, lattice based simulation methods are not feasible.
Even movement of a small gas bubble over a distance of just one
nanometer can require hundreds or thousands of individual atomic
jumps. Instead we treat the gas atoms and bubbles as Brownian
random walkers. Typical fission gas concentrations are less than
1%. The small concentration of walkers in this system results in a
sparseness of walker interactions. For significant amounts of time
the diffusing gas atoms and bubbles occupy disjoint regions of
space. First passage Monte Carlo offers a way to replace most of
the eventless diffusion jumps by a vastly reduced number of
super-jumps. It does so by partitioning the sample volume into
non-overlapping sub volumes (protective zones), with each con-
taining only one diffusing walker. The super-jump is given by the
direct move of the walker from its original location to the edge
of its protective zone. The time associated with this super-jump
is the time it takes the walker to reach the edge of the protective
zone for the first time, hence first passage. This first passage time
can be calculated analytically for certain geometries of protective
zones. In particular the sphere is a natural choice, as the probability
density for the super-jump to go to any point on its surface is uni-
form in the case of isotropic diffusion. It should be noted that the
random walk processes of individual diffusion jumps and the first
passage super-jumps are statistically equivalent.

First passage Monte Carlo can offer speed-ups of several orders
of magnitude in dilute systems, and thus it enables simulation
times up to several years. In contrast to mean field theories, local
fluctuations and spatial correlations are included. The model pro-
vides simple access to a multitude of statistical data on the simu-
lated systems. The size evolution of individual bubbles can be
tracked, average lifetimes computed, individual knockouts can be
followed and return probabilities calculated as a function of pre-
cipitate size. Our approach offers flexibility to change or switch
out underlying mechanisms allowing direct access to the influence
of each input parameter and every sub-process in the population
evolution.

2. Methodology

Both single fission gas atoms and fission gas bubbles are de-
scribed as one type of object in our simulation, the so-called walk-
ers. Every walker has a set of properties, the most important being
the number of atoms contained in the walker, n, and its diffusion
constant, D. The value n can range from one for single fission gas
atoms, to hundreds or thousands for larger bubbles. For the pur-
pose of this study we take the radius to be a simple function of

the number of atoms in the bubble, by assuming a constant fission
gas density and spherical shape of the walker. Different functional
dependencies for the diffusion constant of each walker can be se-
lected. The models used in this work are discussed below.

While we examine different models for Xe re-solution and dif-
fusion, we do not try to be inclusive. For example, we do not treat
thermal re-solution of Xe, although Veshchunov [12] comments
that it becomes significant in UO, above 1800 K. We also do not in-
clude the effects of bubble pressure on diffusion, an effect that is
likely to become important at low temperatures and low irradia-
tion fluxes. In this regime, moreover, faceted bubbles, which are
believed to move by step nucleation on the bubble surface, have
been observed under certain conditions [13,14]. We leave these
extensions of our model for a future study.

Periodic boundary conditions are applied to our simulation do-
main to approximate a bulk material. Absorbing or reflecting
boundaries are currently being implemented to treat, for example,
thin films or grain boundaries.

The walkers in our code are surrounded by a spherical region, a
so-called protective zone. The size of each protective zone is con-
structed using a simple geometrical process to be as large as pos-
sible without overlapping any other zone. Per default, each zone
contains a single walker. As long as the walker moves inside the
zone no walker-walker interactions can occur. To propagate the
system it is therefore sufficient to calculate the time it will take
the walker to reach the border of its protective zone for the first
time, the first passage time.

Every protective zone has a set of properties, its radius R, its
time of creation ¢, its time of expiration t, when the contained
walker will hit the boundary, and a pointer to its neighboring pro-
tective zone.

At every time step the list of protective zones is searched for the
nearest expiration time t,. The nearest expiration time t, is then
compared to the times of the next recoil t, and the next fission
gas atom production t,; whichever event is soonest is then exe-
cuted. In case of the event being the expiration of a protective zone,
the walker contained in the zone is moved to a random location on
the boundary of the zone, and the protective zone is then redrawn
around the walker. Each advancement step in time for a protective
zone is called promotion. The algorithm demands the ability to pro-
mote protective zones ahead of their expiration time, which we
call premature promotion. For example, consider a small zone with
a short expiration time; it can get trapped next to a large zone with
long expiration time. Chances for the particle in the small zone to
move closer to the big zone are about the same as moving away
from the big zone; however, every step away is smaller than the
preceding step that brought the walker closer, owing to the
decreasing distance of the radius of its protective zone. This can
lead to an asymptotic behavior with a single walker moving in a
shrinking protective zone and consuming all of the CPU time with
high frequency updates. A solution was hinted at in Ref. [1]. We
implemented it by checking the ratio of expiration times of the last
promoted protective zone and its neighbor zone. If this ratio ex-
ceeds a pre-determined threshold, the larger zone is promoted pre-
maturely, and its new protective zone is shrunk by 50% from its
maximum possible radius, thereby freeing the trapped neighboring
walker.

With only one particle per protective zone and no two protec-
tive zones ever overlapping, particle interactions are prohibited.
We solve this dilemma by performing a simple test after each sim-
ulation step. The distance to the neighboring protective zone and
the radius of the minimal sphere containing all of the neighboring
zone’s walkers are calculated. If the difference of these values is
smaller than a threshold Ry, both protective zones are prema-
turely promoted and a new protective zone, termed cooperative
protective zone (CPZ), is constructed around the mean of the coor-
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dinates of their combined walkers. The radius of this CPZ is chosen
so that the walkers from the two zones are on the inside of the new
zone and have a distance of at least Ryqq4 to the new zone boundary.

This new zone might intersect uninvolved nearby protective
zones. In this case all intersected zones must be prematurely pro-
moted and walkers then ending up inside the CPZ will be added to
the CPZ. Walkers lying entirely outside are provided with a new,
smaller PZ that does not overlap the CPZ. Walkers intersecting
the boundary of the CPZ trigger a radius increase of the CPZ, until
they are entirely on the inside and have a distance of at least Ryqq to
the zone boundary. This radius increase prompts for a rechecking
of intersection, making it an iterative process, which can lead to
cascading growth of the CPZ.

The walkers inside the CPZ are then advanced by conventional
step-by-step MC until either one of the walkers touches the bound-
ary or two walkers touch each other. The expiration clock of the
CPZ is then set to the total time of this conventional MC run. Each
of these MC steps is recorded by the software to allow premature
propagation of the CPZ by rolling back the walker coordinates to
any point in time. In practical situations only a few hundred con-
ventional MC steps are needed for each CPZ and out of hundreds
of protective zones only a few are CPZs. In fact, the fraction of CPZ’s
varies approximately as the square of the concentration of walkers.
By varying the bunching threshold Ry, and the CPZ padding
length Rp.q the execution times spent on analytical first passage
steps and the times spent on conventional MC steps can be shifted
back and forth, enabling an optimum balance to be found for every
sample configuration. The mixture of conventional and accelerated
first passage Monte Carlo provides added flexibility. For example
short ranged (<Rpuncn/2) interactions between walkers can be easily
implemented, such as an effective potential barrier a walker has to
overcome when entering an over-pressured bubble. Any interac-
tions beyond hard spheres would be very hard to accommodate
in a purely first passage formalism.

Prematurely promoting a protective zone means obtaining the
coordinates of the contained walkers ahead of its expiration time.
For multi-walker zones this is achieved by storing a history of all
classical Monte Carlo steps, allowing for a replay to any intermedi-
ate time step. For single walker zones this is achieved by a simple
scaling of the zone radius according to the square root of the
passed fraction of the expiration time.

For improving the scalability of our simulation code three tasks
deserve mention. The first one involves the temporal sorting of the
protective zones in the simulation. At each regular time step the pro-
tective zone with the smallest (i.e. closest) expiration time has to be
determined. This is best achieved through the implementation of the
abstract data type priority queue. We store pointers to all protective
zones in a binary tree, whereby the pointer in the root node of the
tree always points to the protective zone that expires next.

The second task consists of selecting a random candidate walker
for a re-solution process. Depending on the mechanism, the walk-
ers are assigned different relative probabilities for participation in
a re-solution event. We augment the aforementioned binary tree
by storing in each node the sum of all weights in the sub-tree
rooted at that node. A walker is then randomly chosen by obtaining
a random number p between zero and the sum of all walker
weights, and walking the tree from the top. At each node a tri-val-
ued choice is made to determine whether to select the current
node, or continue down the tree either to the left or right child
node, decrementing p accordingly. Every change in weight to a
walker triggers an update of the tree which is of O(log(N)). The
advantage is the reduction in complexity for choosing a walker
from O(N) to O(log(N)). For systems where the number of walker
weight changing reactions, e.g., coalescence, does not drastically
exceed the number of re-solution events, a substantial speed-up
can be achieved.

The third task is finding the maximum non-overlapping radii for
the protective zones, and determining if a newly inserted particle
appears in an existing protective zone. A spatially sorted index of
all protective zones is kept in a modified link-cell data structure.
This index is consulted whenever a proximity search for protective
zones is performed to obtain the distance to the closest neighbor-
ing protective zone surface. As opposed to the common application
of link cells in molecular dynamics simulations, no fixed cut-off
distance exists for the neighbor search. Link cells must be searched
in an outward spiraling pattern until at least one neighbor is found
and even then further cells must be searched until the existence of
further potentially closer neighbor zones can be safely excluded.
Protective zones up to a maximum size r,,, are sorted into the link
cells. Zones exceeding the threshold are sorted into a separate large
zone list. By capping the maximum radius inside the link cells, an
upper bound can be put on the search radius.

To avoid rejection sampling and frequent evaluation of the first
passage time distribution (see Eq. (1) and Table 1 for definition of
terms) we chose inverse transform sampling to obtain the random
first passage times. From the derivation above it is evident that the
cumulative distribution function (CDF) of the first passage proba-
bility is the complement to the survival probability. Since an expli-
cit inversion of this function is not feasible, we tabulate its values
by evenly sampling its codomain [0;1), the interval from zero to
one, excluding one. As the CDF is monotonous an efficient binary
search can be performed. We tabulate several thousand data
points. This tabulation need only be done for the first run of our
code; the results can be stored and used in later runs. The tabu-
lated sampling function is linearly interpolated, yielding a fast
source of correctly distributed random first passage times.
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In our calculations, the diffusion constant of each walker is ta-
ken strictly as a function of its radius, with the radius in turn being
a function of the number of contained atoms, only. In this work we
focus on a single functional dependence, namely that D is propor-
tional to r—*. This dependence is representative of surface diffusion,
with matrix atoms performing random jumps along the surface of
the fission gas bubbles. This mechanism is assumed to be dominant
for fission gas bubbles in UO, at temperatures above 1500 K [15].
In our simulations we set the diffusion coefficient of single-atom
walkers, which automatically determines the diffusion coefficient
of bubbles of all sizes. It should be noted that this constitutes a
simplification of the real physics, as single fission gas atoms, unlike
bubbles, are likely migrating through vacancy jumps rather than
surface diffusion. Furthermore, the surface diffusion in small bub-

Table 1
Quantities used in the first passage Monte Carlo fission gas bubble population
evolution simulation algorithm.

Quantity Symbol
Walker diffusion constant D
Number of atoms per walker n
Fission gas atomic volume Qp
First passage time probability distribution P(t)
Protective zone radius R
Threshold distance for protective zone combination Rbunch
Minimum protective zone radius needed to fully enclose all Rinin
contained walkers
Padding added to new multi-walker protective zones Rpad
Walker radius r
Protective zone creation time (e
Protective zone expiration time e
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bles is believed to be suppressed by the presence of gas atoms,
which block jump target sites along the bubble surface [16]. Preli-
minary simulation results show that the single gas atom diffusivity
has an influence on the concentration of fission gas in solution. The
reduced retention time in solution, caused by a higher diffusivity,
will reduce the nucleation rate of new bubbles. Suppression of
small bubble mobility, however, will hamper bubble growth by
coalescence, which we identify as the dominant coarsening mech-
anism. The analysis of this interplay will be subject of a later work.
A more refined treatment of the gas atom and bubble diffusion
behavior can easily be added to the simulation code. Trapping of
Xe atoms, which is not thought to be relevant for in-pile conditions
[17], is also not presently implemented in the code.

We included two basic re-solution mechanisms in the simula-
tions, homogeneous and heterogeneous re-solution. Homogeneous
re-solution is implemented as a single-atom knockout process;
multiple knockouts are negligible for homogeneous re-solution
[2]. Using the binary collision Monte Carlo Software 3dTRIM [2]
we calculated the fission gas atom recoil energy spectrum per fis-
sion event, averaged over the energy and mass distribution of 2*°U
fission fragments. The recoil rate was then taken as the number of
recoils per fission event multiplied with the fission rate. Previous
work [2] using binary collision Monte Carlo and molecular dynam-
ics simulations showed that recoils with energies less than 100 eV
can be excluded since they do not escape the bubbles. The times
between recoil events are sampled from a Poisson distribution
and the recoil energies are then sampled from the normalized re-
coil energy distribution. For every recoil event, a walker is chosen
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Fig. 1. Snapshots of three (100 nm)* simulation cells taken at 1-2 years of simulated time at constant gas accumulation of 2.75 x 10°°Xe nm3s

randomly, applying the number of atoms in each walker as a prob-
ability weight. A random location inside the walker is then selected
as the starting point of the fission gas recoil. A cascade is then
launched using the 3dTRIM algorithm using a random recoil direc-
tion. As soon as the remaining energy of the fission gas recoil falls
below a threshold value (100 eV) the cascade stops and the final
position of the recoil atom is returned to the main program. A
new single-atom walker is inserted at this position and the walker
of origin is shrunk by one atom. Notably this procedure is also ap-
plied to handle recoils of gas atoms in solution. While this does not
alter the bubble size distribution directly, it does add to the diffu-
sion of gas atoms.

The heterogeneous re-solution is implemented as the ad hoc
destruction of entire bubbles. We assume that re-solution is caused
by the electronic energy loss S, of fission fragments passing close to
bubbles. Thus the re-solution rate depends on the fission rate and
the average path length with which fission fragments are traveling
with an electronic energy loss above a certain threshold value.
Again we use the binary collision Monte Carlo Software 3dTRIM,
which also treats the electronic stopping component, to average
over all path lengths with S, above a threshold value of ions sam-
pled from the energy and mass distribution of 23U fission frag-
ments. To locate a bubble for re-solution we assume the re-
solution cross section to be proportional to the square of the bub-
ble radius [6]. The selected walker is again prematurely propagated
to obtain its specific location. A sphere with a diameter of 10 nm is
then drawn around the walker location and the atoms in the walk-
er are redistributed randomly inside this re-solution volume. The
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solution for varying diffusion constants Dy (from left to right 107 m?s~!, 107 '®* m?s~!, and 10~'" m? s~') Black disks are fission gas bubbles and atoms, light gray disks
indicate the protective zones, and the dark circles indicate the progress of each protective zone as the distance each particle would be displaced in case of a premature update
of the protective zone. The average bubble radius clearly grows with increasing diffusivity.
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size of the re-solution volume is guided by the size of the molten
zone along the fission fragment track as calculated using a two-
temperature model [18,19].

Care must be taken to recognize and potentially avoid finite size
effects in the simulation runs. An obvious limitation for the maxi-
mum attainable bubble size is given by the total number of fission
gas atoms in the simulation volume. Should growth dominate over
re-solution and gas generation, eventually nearly all gas atoms
would coalesce into one large bubble, which then would then have
no further means to grow. This can also be re-interpreted as a lim-
itation on the maximum reachable simulation time. One way of
overcoming such a limitation is by dynamically growing the simu-
lation volume and thus increasing the amount of gas in the simu-
lation cell. We implemented a simple algorithm into our software
which increased the dimensions of the simulation cell in integer
multiples and fills the added space with replicas of the original
simulation volume. The artificial periodicity thereby introduced
quickly disappears as the replicas continue to evolve randomly
and separate from each other. This allows us to keep the number
of walkers manageable by only growing the cell when the number
of walkers drops below a fixed threshold.

3. Simulation results

Selected simulation results are now presented to illustrate the
quite different behaviors of bubble evolution that result from
homogeneous and heterogeneous dissolution, while at the same
time demonstrating the broad scope of the method. We ran simu-
lations with continuous fission gas production, as well as runs with
a fixed fission gas concentration. Simulation cell sizes range be-
tween (100 nm)? and (200 nm)?, periodic boundary conditions

D. Schwen, R.S. Averback /Journal of Nuclear Materials 402 (2010) 116-123

were applied in every run. The diffusion coefficient D for walkers
containing n atoms was assumed to be Don~#/, which is propor-
tional to r~*. The single Xe atom diffusion coefficient, Dy, in this
model, therefore, determines the diffusion coefficients of all bub-
bles. The walker radius was calculated, assuming constant density,
as (3Qfgn/4n)”3 + I'ee. FOr simplicity the recombination distance
T'ec Was chosen to be zero.

The three viewgraphs in Fig. 1 illustrates the general features of
the code; they show snapshots of three different (100 nm)* simu-
lation cells taken at up to 2 years of simulated time at the constant
gas accumulation rate of 2.75 x 107 Xenm>s~' and homoge-
neous re-solution. The diffusion constant Dy is increasing from left
to right with values of 107°m?s™!, 107¥m?s!, and
1077 m2 s~ !, Fission gas bubbles and atoms are drawn as black
disks, while light gray disks indicate the protective zones. Shown
are two dimensional projections of the three dimensional simula-
tion cell. No two protective zones are overlapping in space. The
dark circles, concentric to the protective zones, indicate the spher-
ical surface to which a given particle would jump, if the protective
zone were updated ahead of its expiration time. Its radius is given
by the size of a hypothetical protective zone that would yield an
expiration time coinciding with the time of the snapshot, taking
the same random sample from the first passage probability distri-
bution as is used for the actual protective zone. The average bubble
radius clearly grows with increasing diffusivity.

We first investigated the stability of various bubble populations
under irradiation by preparing several initial bubble populations.
These samples were then subjected to fission fragment irradiation,
but without generating additional fission gas. All states employed
the same gas concentration of 5.6 x 10%> m> (0.23 at.%) at differ-
ent levels of precipitation, ranging from a random solution of single
gas atoms, to bubbles with a radius of 6 nm. The irradiation condi-

LI IIHHP T TTTITm T TTTITT T TTTITm T TTTITT TT I\IIIII T \IHIII TT \lHI\I TTT
ERaie ol o i
= L gas in bubbles .
=)
I |
oo
Y E ]
2 1 T G T =g PSP D =10""m/s
=
=
i e D=10"m's ]
= E |
:
_D - - T |||H| -lgl ; T |||i|| LI I{\’ull -
=] 3 D=10" m'/s s —
51 Vi il
&0 /
8 ‘}’/
o 02 ‘_3 /}’/ ~C0.2‘)0(3) o
g i gas in solution Pt n
o 7’
O - I Wiiii // __ pe|
> i 1 IllllHl 1 1 |II|lI| 1 1 \I\\III
25 2% 27
[ s b s 3 10 10 10 -
6=5.6*10 "Xe/m gas concentration ¢ [Xelm]]
11 III\HL 11 IIIJH‘ 11 |||!||‘ 11 l\IIIIJ 11 |\||||J 11 I‘IIIII 11 \|H||I 1 IJIHILI L1l
1 2 3 4 5 6 7 8 9
10 10 10 10 10 10 10 10 10
time t[s]

Fig. 2. Evolution of the volume-averaged bubble radius as a function of time for various initial configurations and two different diffusivities. Keeping the total Xe
concentration constant at 5.6 x 10%> Xe/m?> (0.23 at.%) the gas was randomly distributed as bubbles with radii between 1 nm and 6 nm, and as single gas atoms in solution.
Black curves are obtained from simulation runs with homogeneous re-solution, while the gray curves show results from runs with the re-solution turned off. All initial
configurations evolve towards an equilibrium configuration with the same mean radius depending on the diffusion constant Dy. The inset shows equilibrium bubble radii as a
function of the gas concentration for a diffusion constant Dy of 1071 m? s~!. The data can be fitted with the equation Teq = To * ¢* with the exponent o = 0.290(3).
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tions correspond to a fission rate of 1078 nm~> s~!. Control simula-

tions were run for each initial state with the re-solution mecha-
nism deactivated. The evolutions of the volume-averaged bubble
radius as a function of time for various initial configurations and
two different diffusivities are plotted in Fig. 2. The black curves
are obtained from simulation runs with homogeneous re-solution,
while the gray curves show results from the control runs with re-
solution turned off. With homogeneous re-solution included, all
initial configurations evolve toward a steady state configuration
with the same volume-averaged radius depending on the diffusion
constant Dy. The inset shows these steady state bubble radii as a
function of the gas concentration for a diffusion constant D, of
107" m?s~". The data can be fitted with the equation re, =rg * ¢*
with the exponent « =0.290(3). A similar steady state patterning
for immiscible alloys under irradiation has been theoretically pre-
dicted by Enrique and Bellon [20,21] and simulated using kinetic
lattice Monte Carlo by Heinig et al. [22]. Our model, however, is
considerably different, since we do include particle coalescence
as a growth mechanism, but do not treat thermal re-solution.

We next look at growth laws for fission gas bubbles under con-
stant fission gas production, assuming typical reactor conditions

with Xe being generated at a rate of 2.75 x 10~° nm 3 s~ The vol-
ume-averaged bubble radius as a function of time for two different
re-solution mechanisms and various diffusion constants is shown
in Fig. 3. The scaling of the diffusion constants, which is related
to the sample temperature, is reflected in a scaling of the vol-
ume-averaged bubble radius. The growth laws clearly depend on
the re-solution mechanism. For heterogeneous re-solution we ob-
serve a t'/® dependence, independent of diffusivity. The homoge-
neous re-solution case exhibits bubble growth proportional to t#,
with B ranging from 1/3 to 1/4. At constant gas production, and
thus proportionality between time t and gas concentration c, a va-
lue of 1/3 for B requires a constant bubble number density, while
lower values require an increase in bubble number density, and
thus the nucleation of new bubbles. For a single-atom diffusion
constant Dy of 1071 m? s™!, a fit of the slope yields an exponent
p of 0.29, which, notably, is identical to the exponent « in the rela-
tion of equilibrium bubble radius and gas concentration, shown in-
set in Fig. 2. The bubble population, therefore, must be constantly
in steady state. The curve labeled rp,,, denotes the maximum pos-
sible bubble size attainable in the simulation volume by aggregat-
ing all available Xe atoms into a single bubble. Care must be taken

10 T IIII\IIl T II]III\‘ T I[IIIIII T lIII\IIl T T TTTTI T T TTTIIO]

- 102 m’s™ homogeneous re-solution
- 10" 2!
L = 10 %!
2 —
e
05

0.2 =
L | J/I/I L

volume averaged bubble radius <> [nm]

- 102" m’%s” heterogeneous re-solution =
19 2 -1
10 "m’s
]O_” mzs-]
1= 10" m’s” -
05 =
0.2 —
1 lIIHIIl 1 IlJIIHJ L1 [J|||l| L1 ||lJ||| 1 illlllll 1L e
10° 10° 10* 10° 10° 107 10°
time t [s]

Fig. 3. Volume averaged bubble radius as a function of time, for two different re-solution mechanisms and various diffusion constants. Fission gas is added at a constant rate
of Xe/s. The growth law depends strongly on the re-solution mechanism, yielding a t'/® dependence for the heterogeneous re-solution case and t' as well as t'/4
dependencies for the homogeneous re-solution case. The curve labeled r,,,.x denotes the maximum possible bubble size attainable in the simulation volume by aggregating all
available Xe atoms into a single bubble. The scaling of the diffusion constants, which is related to the sample temperature, is reflected in a scaling of the volume-averaged

bubble radius.



122

D. Schwen, R.S. Averback /Journal of Nuclear Materials 402 (2010) 116-123

. T T T T | T T T T I T T T T
10” E
E 21 2.1 .
C — 107 m’s homogeneous re-solution
107 == {0%ms"
: = 10" k!
— 10* F =
b E A 2% 3
g - }‘ B t = 35 days, ¢ = 8*10° [Xe/m']
e - . \
L W 3l \
(] - '\ \ ./'\ .
=~ ! e \ e Semagiey
J 4 : ) / :
= 10 F g Pt N ' I
- . \ .
2 H oo !
= 1 i
T 107 | i !
E 1 .
St = | u 1 |
a 1 1 1 I I I T I 1 1 1 1 i 1 1 0| I | T | J 1 1 1 J 1 1
2 — 1 T 1 I L I T 1 1 1 I L I LI L L [ — 1 1 [ 1 1
2 100 F
[z - 21 2.1 :
5 C 107 m's heterogeneous re-solution
=] : s g
S 10 3 §_ 10 19 mZS 1
"g - 10" m%"
= 4 -15 2 -1
g 10" g 10 "m's
2 -
o E
T
m 10F
10° &
107
: 1 1 1 1 | | 1 1 1 | 1 1 1 1 | b1 1 1 | 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5
I, [nm]

Fig. 4. Bubble size distributions for the homogeneous and heterogeneous re-solution cases as a function diffusion constant. All histograms were taken at t = 3 x 10° s. The size
distributions for the heterogeneous re-solution runs (gray curves) are clearly peaked around an average radius, as opposed to the histograms of homogeneous re-solution
runs (black curves) which exhibit a maximum at the single gas atom radius. The amount of single gas atoms in solution is comparable for both re-solution mechanisms at the

same diffusivities.

to ensure that final size effects do not influence the results and that
the average bubble size stays well below r,,,,. We verified that the
results are indeed identical with an enlarged simulation box size.

As the volume-averaged bubble size provides only a limited
description of the system, we examined the bubble size distribu-
tions more closely. Bubble size distributions for the homogeneous
and heterogeneous re-solution cases as a function of diffusion con-
stant are plotted in Fig. 4. All size distributions were taken at
t=3x 10%s, ~35days. The size distributions for the heteroge-
neous re-solution runs (gray curves) are peaked around an average
radius, in contrast to the histograms of homogeneous re-solution
runs (black curves) which exhibit a maximum at the single gas
atom radius. The concentration of single gas atoms in solution,
however, is comparable for both re-solution mechanisms at the
same diffusivities. The different cross sections in the homogeneous
and heterogeneous re-solution mechanisms respectively favor and
suppress the development of large bubbles.

4. Summary and conclusions

We demonstrated the applicability of a first passage method to
the problem of fission gas bubble evolution. Rather than describing

a specific model for the evolution of the bubble population, we
have provided a framework that enables a systematic analysis of
the impact of various model aspects. In this work we explored bub-
ble population evolution as a function of gas concentration and dif-
fusivity for two different re-solution mechanisms. We find the
interesting results that for homogeneous re-solution, and a fixed
quantity of Xe gas, the average bubbles size acquires a steady state
value that depends on the bubble diffusion coefficient but not the
initial size distribution, i.e., the steady state is independent of the
initial conditions. We also find that for cases including Xe gas gen-
eration, the bubble size growth laws differ significantly for homo-
geneous and heterogeneous re-solution. These findings should
guide appropriate experiments and suggest suitable observables.
In this regard, an experimental determination of the bubble growth
law should lead to the selection of a re-solution mechanism which
is consistent with the observations. The principal advantages of
this model over the rate-theory approach are the treatment of coa-
lescence and fluctuations, and no upper boundary for the bubble
size has to be assumed. The return probability for re-solved atoms,
moreover, is calculated explicitly; it does not need to be approxi-
mated with the usual r/R isolated particle approximation, and it in-
cludes the possibility for gas atoms to recoil back into the bubble.
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The simulation method is in principle applicable to other systems
like helium in metal, or dilute immiscible alloys such as CuMo,
CuW or oxide dispersed steels.
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